MAP-PDMA
Wolfram Erlhagen
CMAT - University of Minho
Abstract :: Dynamic Neural Fields (DNFs) formalized by nonlinear integro-differential equations have been originally introduced as a model framework for explaining basic principles of neural information processing in which the interactions of billions of neurons are treated as a continuum. The intention is to reduce the enormous complexity of neural interactions to simpler, population properties that are tractable by analytical mathematical tools. More recently, complex models consisting of several connected DNFs have been developed to explain higher level cognitive functions (e.g., memory, decision making, prediction and learning) and to implement these functionalities in autonomous robots. I will give an overview about the physiological motivation of DNFs, the mathematical analysis of their dynamic behaviors, and their application in cognitive robotics. As an example study, I focus on ''multi-bump'' solutions that have been proposed as a neural substrate for a multi-item memory function. I show how the existence and stability properties of these solutions can be exploited to endow a robot with the capacity to efficiently learn the timing and the serial order of sequential events. I also discuss new mathematical challenges that are motivated by robotics applications.
Seminar Room of DMat-UMinho (3.08), and via zoom at
https://videoconf-colibri.zoom.us/j/92403741454?pwd=UE43T1c3M3g5Y3VoWlZENkMwaGcrUT09
Seminar for the Doctoral Program in Applied Mathematics (MAP-PDMA Seminar)